Newsletter

Nauka i technologie

Morskie żele. Kiedy woda w morzu zmienia się w płyn nienewtonowski

29.10.2022, 08:00aktualizacja: 29.10.2022, 08:00

Pobierz materiał i Publikuj za darmo

Występujące w morzach algi i sinice wydzielają śluzowate polimerowe substancje, które mogą lokalnie zmieniać własności wody morskiej - tworząc z niej ciecz nienewtonowską. A w takim płynie zmienia się wiele parametrów w tym choćby fizyka opadania cząstek na dno.

Płynem nienewtonowskim, z którym chętnie robi się eksperymenty w przedszkolach czy szkołach, jest woda zmieszana z mąką ziemniaczaną (w relacji np. 1:2 czy 2:3). Kiedy taką masę szybko się ugniata - nabiera ona konsystencji plasteliny i daje się z niej formować w rękach kulki. Kiedy jednak masę przestaje się naciskać - traci ona swoją formę i zaczyna przypominać ciecz - przepływa między palcami. W spektakularnych pokazach wypełnia się taką masą basen. Po powierzchni basenu daje się przebiec niemal suchą stopą. Kiedy jednak ktoś stanie tam bez ruchu - masa oblepia mu stopy i zaczyna go stopniowo zatapiać.

Sekretem płynu - który sprawia, że ma on takie nieoczywiste własności - jest jego zmienna lepkość. Cecha ta bowiem zmienia się (i to nieliniowo) w zależności choćby od szybkości odkształcania materiału. W przypadku mieszaniny mąki i wody im szybciej się ją naciska, tym jest ona bardziej “zwarta” - czyli mniej się lepi. To tzw. płyn zagęszczany ścinaniem.

Są jednak i inne płyny nienewtonowskie - tzw. rozrzedzane ścinaniem - w których przyłożenie odpowiedniej siły powoduje, że stają się mniej lepkie i zaczynają “płynąć”. Do takich płynów należy choćby keczup, szampon, krew, farba czy ruchome piaski. Pozostawione same sobie - mają dużą lepkość i wydają się mało płynne. Jeśli jednak przykładamy do nich naprężenia (np. szybko je naciskamy lub nimi trzęsiemy) - stają się mniej lepkie. To dlatego w ruchomych piaskach lepiej okiełznać panikę i poruszać się powoli, aby nie zapadać się coraz głębiej pod powierzchnię. A butelką keczupu - trzeba mocno potrząsnąć, żeby sos zaczął z niej płynąć (nieźle spisuje się tu trzymanie butelki pod kątem 45 stopni do podłoża i uderzanie w butelkę prostopadle do kąta jej nachylenia).

I właśnie takim nienewtonowskim płynem tego drugiego typu - rozrzedzanym ścinaniem - może się w pewnych warunkach stawać woda morska, w której zakwitły niektóre gatunki alg i sinic. Organizmy takie wydzielają - aby zapewnić sobie pożądane warunki do życia - polimerowe substancje o konsystencji śluzu, tzw. egzopolimery. Ekstremalne ilości takiego “śluzu morskiego” (po angielsku – mucilage lub potocznie sea snot) zdarzają się choćby w Morzu Marmara, w Morzu Śródziemnym, u wybrzeży Japonii, czy w Zatoce Biskajskiej - wymienia w rozmowie z PAP dr hab. inż. Magdalena Mrokowska, profesor Instytutu Geofizyki PAN.

Dr Mrokowska w swoich badaniach opisuje to, w jaki sposób w obecności takiego śluzu opadać mogą na dno morza niewielkie cząstki stałe - takie jak obumarłe szczątki organizmów, materia nieorganiczna, mikroplastiki czy tzw. śnieg morski.

Poznanie fizyki tego, jak poruszają się takie cząstki w przypadku wystąpienia ekstremalnego stężenia egzopolimerów, może się przydać biologom, ekologom morza, oceanologom, klimatologom - choćby do dokładniejszego modelowania obiegu węgla - budulca cząstek organicznych - w przyrodzie czy badania mikrobiologicznych sieci pokarmowych.

Teraz badaczka i jej współpracownicy - w skonstruowanym w laboratorium modelu - przyjrzeli się temu, jak poruszają się takie cząstki w cieczy nienewtonowskiej, jaką jest woda z różnym stężeniem soli i egzopolimerów. Badania ukazały się w Marine Chemistry (https://doi.org/10.1016/j.marchem.2022.104163).

Dr Mrokowska tłumaczy, że egzopolimery są żelami tworzącymi w wodzie trójwymiarową sieć. Mogą mieć różną strukturę – początkowo mogą tworzyć układ koloidalny, następnie łączyć się w żelowe mikroagregaty zawierające także inną materię organiczną i mineralną, a w ekstremalnych przypadkach z czasem mogą tworzyć kilkumetrowe gęste struktury obserwowane np. w Adriatyku.

“Mikroorganizmy mogą to odczuwać tak, jakby pływały w galarecie” - opisuje dr Mrokowska. Z badań zespołu wynika, że polimery obecne w wodzie mogą zupełnie zmienić dynamikę cząstek morskich - zarówno prędkość jak i pozycję, w jakiej opadają w porównaniu z tym, co dzieje się w „zwykłej” wodzie morskiej. W takich warunkach inaczej będą przebiegały procesy w skali mikro związane z oddziaływaniami pomiędzy cząstkami takimi jak agregacja, ale też motoryka mikroorganizmów. “Mikroorganizmy nieznaczne z naszego punktu widzenia zwiększenie lepkości ośrodka mogą odczuwać tak, jakby poruszały się w galarecie” - opisuje dr Mrokowska.

Zmiany w dynamice cząstek w skali mikro przekładają się z kolei na tempo sedymentacji, a ta chociażby na transport węgla na dno mórz i oceanów wraz z opadającą obumarłą materią organiczną, co jest istotne z punktu widzenia redukcji dwutlenku węgla w atmosferze. Do efektywnego badania wielkoskalowych procesów niezbędna jest więc wiedza na temat tego, co dzieje się na poziomie pojedynczych cząstek, a w przypadku ekstremalnych ilości egzopolimerów obserwowanych w niektórych morzach jest jeszcze wiele do zbadania w tym zakresie. Badaczka podsumowuje, że dynamika opadania zależy zarówno od stężenia polimerów, jak i soli w wodzie. Może się np. zdarzyć, że jeśli roztwór jest dość rzadkim żelowym koloidem - cząstki opadać będą wolniej, niż kiedy w wodzie pływają gęste agregaty śluzu, które da się ominąć. Zależności, jakie można tu obserwować wcale nie muszą być oczywiste.

„To, że procesy w wodzie morskiej mogą podlegać nienewtonowskim regułom, jest dość dużą zmianą w podejściu do badania zjawisk dobrze poznanych i opisanych w kolumnie newtonowskiej wody morskiej. Do pewnego stopnia możemy czerpać wiedzę z innych dziedzin zajmujących się nienewtonowskimi własnościami wodnych roztworów egzopolimerów, jednak niezbędne są badania ukierunkowane na warunki panujące w środowisku morskim. Wysokie stężenia egzopolimerów wymagają modyfikacji standardowo stosowanych w mikro- i makroskali modeli i uwzględnienia nowych efektów takich jak np. wpływ lepkosprężystości na pozycję opadających cząstek. Mam nadzieję, że nasza praca przyczyni się do rozwinięcia metodyki badania zjawisk nienewtonowskich w morzach w sytuacji ekstremalnych zakwitów alg” - podsumowuje dr Mrokowska.

Badaczka zaznacza, że w Polsce, choć również zdarzają się zakwity alg i sinic, to na razie nie wykazano, że właściwości wody zmieniają się tam w aż tak dużym stopniu, aby tworzyła ona płyn nienewtonowski. Dodaje jednak, że w związku z globalnym ociepleniem przewiduje się, że zakwity alg na całym świecie będą coraz częstsze i intensywniejsze. A co za tym idzie, możemy spodziewać się więcej egzopolimerowych żeli w morzach.

Źródło informacji: Nauka w Polsce

Pobierz materiał i Publikuj za darmo

bezpośredni link do materiału
Data publikacji 29.10.2022, 08:00
Źródło informacji Nauka w Polsce
Zastrzeżenie Za materiał opublikowany w serwisie PAP MediaRoom odpowiedzialność ponosi – z zastrzeżeniem postanowień art. 42 ust. 2 ustawy prawo prasowe – jego nadawca, wskazany każdorazowo jako „źródło informacji”. Informacje podpisane źródłem „PAP MediaRoom” są opracowywane przez dziennikarzy PAP we współpracy z firmami lub instytucjami – w ramach umów na obsługę medialną. Wszystkie materiały opublikowane w serwisie PAP MediaRoom mogą być bezpłatnie wykorzystywane przez media.

Newsletter

Newsletter portalu PAP MediaRoom to przesyłane do odbiorców raz dziennie zestawienie informacji prasowych, komunikatów instytucji oraz artykułów dziennikarskich, które zostały opublikowane na portalu danego dnia.

ZAPISZ SIĘ